General Certificate of Secondary Education
MATHEMATICS B
J567/03
Paper 3 (Higher Tier)
Specimen Mark Scheme
The maximum mark for this Paper is 100.

1	(a) Correct rotation to triangle with vertices ($1,-2$), (4, -2), (1, -4)	3	B2 for rotation 90° anticlockwise about origin OR B1 for rotation 90° clockwise about incorrect centre
	(b) Translation $\left[\begin{array}{l} 2 \\ 1 \end{array}\right]$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Accept " 2 right 1 up"
2	(a) 3 and ${ }^{-1}$	1	Both correct
	(b) Points correctly plotted Ruled line through $(0,7)$ and $(4,-1)$	1	ft their (a) Correct line only
	(c) 3-4-3.6	1	

$\mathbf{3}^{*}$	Complete correct calculation to find $18 \frac{3}{8}$ pints required, and rounds up to	$\mathbf{6 - 5}$	For the lower mark, there may be one minor slip in the arithmetic at any stage, or weaker explanation.
20. Indicates with correct and clear language that as the bottles have the same unit cost it does not matter which combination is chosen, and gives at least one combination for 20		Examples of combinations:	
pints.		$6,6,2,4,4$	
		$6,6,2,2,2,2$	

4	(a)(i) $h=\frac{P+5}{3}$ oe	2	M1 $h=\frac{P-5}{3}$ or $h=\frac{P}{3}-5$
	(ii) $h=\frac{T}{2}-w$ oe	2	M1 $h=\frac{T-w}{2}$ or $h=\frac{T}{2}+w$ oe
	(b) $x \geq-2$ and	3	M2 $x \geq-2$ without correct diagram OR M1 $6 x-2 x \geq-8$ or better B1 ft their inequality correctly represented on the number line
5	(a) $\frac{20 \times 4}{0.5}=160$	2	M1 Two of the three numbers correctly rounded to 1sf
	(b) Roughly 20×10^{22}	1	Condone 16×10^{22}
6	(a) 0.55	1	
	(b) 0.2	2	M1 for $1-(0.25+0.15+0.4)$
7	(a) She is [extremely] unlikely to get the same result [because of a large number of combinations]	1	Accept any correct statement including 'she will not get the same results'
	(b) Not very close together, or not close to $0 \cdot 2$, or ' 2 ' occurs twice more than ' 1 ' Too few trials to be sure, or she needs to do more trials oe	1 1	Accept any correct statement Accept any correct statement 'More numbered balls' is not enough
8	(a) 108°	2	M1 180° - $\left(360^{\circ} \div 5\right)$ Accept any correct method
	(b) 108° does not divide exactly into 360°	1	Allow any equivalent correct statement
9	(a) All terms will be odd	1	Accept any valid statement
	(b) $6 n+1$	2	M1 $6 n$ seen

10	(a) $2 \times 2 \times 2 \times 5$ or $2^{3}(\times) 5$	2	M1 for attempt at factor tree/ladder or correct factor pair or better seen Or SC1 for 2, 2, 2, 5 identified but not as product
	(b)(i) 8 cao	2	B1 for $2 \times 2 \times 2$ oe or answer of 2 or 4
	(ii) 120 cao	2	B1 for $2 \times 2 \times 2 \times 3 \times 5$ oe or a multiple of 120 Or M1 for listing multiples of 24 AND 40 After 0,0 in (b) Award SC2 in (b)(ii) for reversed answers
11	(a) 8640×0.15 (oe) or 1296 8640 - 'their 1296' 7344	M1 M1 A1	M1 1 - 0.15 or 0.85 M1 8640×0.85
	(b) Yes, as it is [just] over 15 with correct working Or No, it is over 15 with correct working	3	M1 Attempt to find 15% of 12800 , eg 1280 and attempt to halve B1 1920 seen B1 2000 > 1920 and conclusion After 0, SC1 for figs 192 seen Accept any equivalent method.
12	$\begin{aligned} & a=280^{\circ} \\ & b=100^{\circ} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	M1 $\angle \mathrm{PQO}=\angle \mathrm{PRO}=90^{\circ}$ A1 ft $360^{\circ}-\left(90^{\circ}+90^{\circ}+80^{\circ}\right)$, or $360^{\circ}-$ $\left(90^{\circ}+90^{\circ}\right)+\left(360^{\circ}-\right.$ their $\left.a\right)$
13	(a) Tree diagram complete	2	M1 first or second set correct entries
	(b) 0.42	2	M1 0.7×0.6 or ft their tree diagram
14	Finding PR: $8: 24$ oe seen or used $13 \times \frac{24}{8}$ Finding BC: $54 \times \frac{8}{24}$ Showing information: 45° given as missing angle $\begin{aligned} & P R=39 \\ & B C=18 \end{aligned}$ Complete list of required information, or completed labelled sketch, or missing information completed on given diagrams	B1 M1 M1 B1 A1 A1 B1	Dependent on first M1 earned Dependent on second M1 earned

15	(a) Not enough information - oldest woman could be anywhere in the 50 to 99/100 interval	1	Do not accept "she was 100" oe
	(b) True - about 12 half squares so 120000 women	2	M1 allow for True with inadequate (but not wrong) justification
	(c) False - for age 50 to 100, women about 20 000, men 29000	2	M1 for true or false and 16 to 25 , women about 40000 , men 21000 seen
16	$y=-2 x+8$	3	M2 ${ }^{-} 2 x$ OR M1 for $\frac{6}{2}$ or $(\mathrm{m})=2$ AND W1 for +8 in equation
17	Graph translated right $(5,0)$ marked $(-1,0)$ marked	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	SC2 for graph translated left and $(-5,0)$ and $(1,0)$ shown or SC1 for graph translated left and either $(-5,0)$ or $(1,0)$ shown
18	11 www	4	M3 $5 x=60-7+2$ OR M2 $3 x+7+2(x-1)=4 \times 15$ OR M1 Multiplication by 4 or 8
19	8	2	M1 $\frac{40}{1000} \times 200$ oe
20	$x=7, y=-1$	3	$\text { M2 } \frac{a^{7}}{b}$ OR M1 their $\frac{a^{2}}{b} \times a^{7}$ evaluated, or $\frac{a^{2}}{b}$
21	(a)(i) ${ }^{-2 a+2 b}$	1	
	(ii) $\mathrm{b}-\mathrm{a}$	1	
	(b) QS parallel to $M N$ and double the length because QS $=2(\mathbf{b}-\mathbf{a})=2 \mathrm{MN}$	2	M1 QS parallel to MN and double the length, or for one statement with QS $=2$ $(b-a)$
22	(a) $(x+5)^{2}-37$	3	$\text { M2 } x^{2}+5 x+5 x+25$ OR M1 $(x+5)^{2}$ seen
	(b) $\frac{x-5}{2}$	3	M1 $(x-5)(x+5)$ AND M1 $2(x+5)$

23	(a) Slant height of cone $=4$ Arc length $=4 \times 2 \pi \times \frac{1}{4}[=2 \pi]$ Radius of cone $=1$ (from $\frac{2 \pi}{2 \pi}$)	M1	Accept $l=4$
Use of Pythagoras' theorem			
$h=\sqrt{15}$	M1	$h^{2}+1^{2}=4^{2}$ or better	
	A1		
(b) Scale factor 2	M1		
$2 \sqrt{15}$ cao	A1		

Paper Total: 100 marks

Assessment Objectives and Functional Elements Grid

GCSE MATHEMATICS B
J567/03
Mathematics B Paper 3 (Higher Tier)

	Topic	Context	Ref	A01	AO2	AO3	Functional
1	Transformations		HIG6	5			
2	Draw straight-line graph		HIA4	4			
3	Calculations with mixed numbers	Milk	HBN2			6	6
4	Change subject of formulae; solve inequality		$\begin{aligned} & \text { HBA2 } \\ & \text { HBA } \end{aligned}$	7			
5	Estimate answer to calculation		$\begin{aligned} & \text { HBN5 } \\ & \text { HSN3 } \end{aligned}$	3			
6	Mutually exclusive probability	Counters	HIS1		3		
7	Relative frequency	Lottery machine	HBS1		3		
8	Angle in pentagon; tessellating		HBG3	3			
9	Sequence		HBA1	3			
10	Prime factors, HCF, LCM		HBN6	6			
11	Percentages	Selling cars	HBN4		6		3
12	Geometrical calculation		HSG1	3			
13	Probability with tree diagram	Traffic lights	HSS1		4		2
14	Similar triangles	Company logo	HSG5		7		7
15	Interpreting table and histogram	Marriage statistics	$\begin{aligned} & \text { HGS2 } \\ & \text { HGS3 } \end{aligned}$		5		5
16	Find equation of line		HSA7	3			
17	Transforming graph		HGA6	3			
18	Algebraic fraction equation		HSA1	4			
19	Stratified sampling	School	HGS4		2		2
20	Laws of indices		HGN1	3			
21	Vectors	Parallelogram	HGG5	2		2	
22	Completing the square; simplifying		$\begin{aligned} & \hline \text { HGA2, } \\ & \text { HSA2 } \\ & \hline \end{aligned}$	6			
23	Mensuration of sectors and cones		HGG4			7	
	TOTAL			55	30	15	25

Paper Total: 100 marks

